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7 –Quality Factor



▪ Concept of Quality Factor

▪ Viscous damping

▪ Anchor losses

▪ Internal losses

▪ Damping in stressed beams
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What is the Quality Factor?



▪ System which response to an external force is amplified at given frequencies

▪ Enhancement determined by the quality factor

▪ But… what is the quality factor?
▪ Measure of how good/bad a resonator is

▪ Establishes level of interaction with the “outside”

▪ 𝑸 = 𝟐𝝅
𝑬𝒔𝒕𝒐𝒓𝒆𝒅

𝑬𝒍𝒐𝒔𝒕

▪ 𝑸 =
𝝎𝒓

𝑭𝑾𝑯𝑴

▪ 𝑸 =
𝑺𝟐𝟏 𝝎𝒓

𝑺𝟐𝟏 𝝎=𝟎

What is a resonator?
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▪ It depends on the application

▪ Trade-off
▪ Less influence from external noise

▪ Time required to settle down the transients 𝝉 ∼ 𝟐𝝅
𝑸

𝝎𝒓

▪ Every mechanical structure has resonances

▪ If your application “resonates” – 𝑄 as high as possible

Is it better to have high or low quality factor?
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▪ Simple lumped model:

▪ But where is “c” coming from?

Damping
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𝑸 = 𝟐𝝅
𝑬𝒔𝒕𝒐𝒓𝒆𝒅
𝑬𝒍𝒐𝒔𝒕

=
𝑚𝑒𝑓𝑓𝜔𝑟

𝑐



Possible damping sources in resonators
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▪ A bit more extensive lumped model:

Damping
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𝑸 = 𝟐𝝅
𝑬𝒔𝒕𝒐𝒓𝒆𝒅
𝑬𝒍𝒐𝒔𝒕

=
𝑚𝑒𝑓𝑓𝜔𝑟

𝑐

𝑘

𝑚

𝐹(𝑡)

1

𝑸
=

1

𝑄𝑣𝑖𝑠𝑐𝑜𝑢𝑠
+

1

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
+

1

𝑄𝑐𝑙𝑎𝑚𝑝𝑖𝑛𝑔
+

1

𝑄𝑠𝑢𝑟𝑓𝑎𝑐𝑒
+⋯

𝑐 = 𝑐𝑣𝑖𝑠𝑐𝑜𝑢𝑠 + 𝑐𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑐𝑐𝑙𝑎𝑚𝑝𝑖𝑛𝑔 + 𝑐𝑠𝑢𝑟𝑓𝑎𝑐𝑒 +⋯



Viscous Damping



𝑲𝒏 ≫ 𝟏 𝑲𝒏 ≪ 𝟏

▪ Caused by the interaction of the solid with the surrounding fluid

▪ Two regimes, depending on the Knudsen number

▪ 𝐾𝑛 =
𝜆𝑚𝑓𝑝

𝐿𝑐
=

𝑘𝐵𝑇

2𝜋𝑑𝑔𝑎𝑠
2 𝑃𝐿𝑐

▪ Room temperature, 𝑃𝑎𝑡𝑚: 𝜆𝑚𝑓𝑝 ≈ 70 nm

▪ Viscous regime is dominated by viscosity

Viscous damping
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▪ Squeeze film damping

▪ Drag force damping

Two different types of interaction with the gas
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𝑸𝒔𝒇,𝑲𝒏<𝟏 =
𝝆𝒉𝒇𝒓
𝝁𝒃𝟐

𝒈𝟎
𝟑

𝑸𝒅𝒇,𝑲𝒏<𝟏 =
𝝆𝒉𝒇𝒓
𝟖𝝁

𝒃𝒃



▪ Squeeze film damping

▪ Drag force damping

Two different types of interaction with the gas
M

E
4

2
6

 –
L

e
c

tu
re

 7
 -

Q
u

a
lit

y 
F

a
c

to
r

13

𝑸𝒔𝒇,𝑲𝒏>𝟏 ∼ 𝝆𝒉𝒇𝒓
𝒈𝟎
𝑳𝒑

𝟏

𝑷

𝑹𝑻

𝒎𝒈𝒂𝒔

𝒃 𝑸𝒅𝒇,𝑲𝒏>𝟏 ∼ 𝝆𝒉𝒇𝒓
𝟏

𝑷

𝑹𝑻

𝒎𝒈𝒂𝒔



▪ Reducing dimensions, increases Knudsen number

▪ Increasing mode number, increases frequency

How do you optimize the design in order to 
minimize gas damping?
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▪ Always in viscous regime

▪ Viscosity is so large that 𝑄 < 20 in most cases

▪ What if we put the liquid inside, instead of around the resonator?

What if we are in liquid?
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Clamping losses



▪ In the boundary with the frame, the resonator sends acoustic energy away
▪ This energy is lost

▪ This damping mechanism is difficult to model in general, since many different 
options for clamping exist

▪ As a thumb rule, if ℎ𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 ≫ ℎ𝑑𝑒𝑣𝑖𝑐𝑒 → 𝑄𝑐𝑙𝑎𝑚𝑝 ∝
𝐿

𝑏

Clamping losses
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▪ Instead of perform analytical models, it is more effective to simulate our structure

▪ To do this, we need to input into the model Perfectly Matched Layers (PMLs) 
which absorb all energy that arrives to them

▪ This can be used to minimize clamping losses:
▪ Via anchor design

▪ Via phononic crystals

FEM with Perfectly Matched Layers (PMLs)
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▪ Use of scattering & interference to create band gaps
▪ Range of wavelengths within which waves cannot propagate

▪ Repetitive structure in artificially structured material

▪ Density and/or elastic constants change periodically

▪ Unit cell dimension comparable to (acoustic) wavelengths to stop

Phononic crystals
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Wang, Proc. Solid-State Sens., Actuators 2014



Internal damping



▪ Anelastic solid (recoverable)

▪ Viscoelastic solid (non-recoverable)

Internal material damping
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▪ Strain and stress do not go in-phase

▪ 𝜺 𝒕 = 𝜺𝑴 cos 𝝎𝒕 = ℜ 𝜺𝑴𝒆
𝒋𝝎𝒕

▪ 𝝈 𝒕 = 𝝈𝑴 cos 𝝎𝒕 + 𝜹 = ℜ 𝝈𝑴𝒆
𝒋 𝝎𝒕+𝜹

▪
ෝ𝝈 𝒕

ො𝜺 𝒕
=

𝝈𝑴𝒆
𝒋 𝝎𝒕+𝜹

𝜺𝑴𝒆
𝒋𝝎𝒕 = 𝑬′ + 𝒋𝑬′′

▪ 𝑬𝒄𝒐𝒎𝒑𝒍𝒆𝒙 = 𝑬′ + ⅈ𝑬′′

▪ 𝝈 𝒕 = 𝜺𝑴𝑬′ cos 𝝎𝒕 + 𝜺𝑴𝑬
′′ sin 𝝎𝒕

▪ Energy lost per cycle:

𝚫𝒖 = න
𝑻

𝝈𝒅𝜺 = න
𝑻

𝝈 ሶ𝜺 𝒅𝒕 = න
𝑻

𝝎𝜺𝑴
𝟐 𝑬′ cos 𝝎𝒕 sin 𝝎𝒕 + 𝝎𝜺𝑴

𝟐 𝑬′′ sin2 𝝎𝒕 𝒅𝒕

𝚫𝒖 =
𝝎𝜺𝑴

𝟐 𝑬′′

𝟐

𝟐𝝅

𝝎
= 𝝅𝜺𝑴

𝟐 𝑬′′

Internal material damping
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▪ Energy Stored

𝒖𝒎𝒂𝒙 = න
𝑻/𝟒

𝝈𝒅𝜺 =
𝝎𝜺𝑴

𝟐

𝟐
න
𝑻/𝟒

𝑬′ sin 𝟐𝝎𝒕 +
𝑬′′

𝟐
𝟏 − cos 𝟐𝝎𝒕 𝒅𝒕

𝒖𝒎𝒂𝒙 ≈
𝝎𝜺𝑴

𝟐 𝑬′

𝟐

𝟐

𝟐𝝎
=
𝜺𝑴
𝟐

𝟐
𝑬′

▪ Q

𝑸 = 𝟐𝝅
𝑼𝒎𝒂𝒙

𝚫𝑼
= 𝟐𝝅

𝜺𝑴
𝟐

𝟐
𝑬′

𝝅𝜺𝑴
𝟐 𝑬′′

=
𝑬′

𝑬′′
=

𝟏

𝒕𝒂𝒏 𝜹

Internal material damping
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▪ The anelastic relaxation stems from thermally activated motion of various defects

▪ This motion can be described by Arrhenius’ law ∝ 𝒆
𝑬𝒂𝒄𝒕ⅈ𝒗𝒂𝒕ⅈ𝒐𝒏

𝒌𝑩𝑻

▪ This means that cooling down will “freeze” defects and thus improve Q

▪ Each material has a different “𝛿”

▪ Which one do you think is best?
▪ Single crystalline

▪ Si

▪ Diamond

▪ Poly-crystalline

▪ Ceramics

▪ Metals

▪ Polymers

Thermal activation
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Material comparison
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▪ Quality factor drops as a function of thickness 
▪ this is a clear consequence of a surface loss mechanism

Surface effects
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▪ This is a particular case of internal damping that happens in every material

▪ Expansion during movement will have an associated change in temperature
𝜀 = 𝛼 · Δ𝑇

▪ Δ𝑇 is local and will create a temperature gradient inside the device

▪ This temperature gradient causes a heat flow which implies energy being lost

Thermoelastic damping
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Pre-stressed beams



𝜀 𝑡 = 𝜀0 + 𝜀𝑀 cos 𝜔𝑡

𝜎 𝑡 = 𝜎0 + 𝜎𝑀 cos 𝜔𝑡 + 𝛿 = 𝜎0 + 𝜀𝑀𝐸′ 𝑐𝑜𝑠 𝜔𝑡 + 𝜀𝑀𝐸
′′ 𝑠𝑖𝑛 𝜔𝑡

▪ Energy lost per cycle:

Δ𝑢 = න
𝑇

𝜎 ⅆ𝜀 = න
𝑇

𝜎 ሶ𝜀 ⅆ𝑡 =
𝜔𝜀𝑀

2 𝐸′′

2

2𝜋

𝜔
= 𝜋𝜀𝑀

2 𝐸′′

▪ Energy stored:

𝑢𝑚𝑎𝑥 = න
𝑇/4

𝜎 ⅆ𝜀 ≈ 𝜎0𝜀𝑀 +
𝜀𝑀
2

2
𝐸′

▪ Remember – this is energy density, per unit volume

What happens if we put Tension in the beam?
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▪ We can use: 

𝜀 𝑥, 𝑡 = 𝜀0 +
1

2𝐿
න
0

𝐿

𝑤 𝑡 𝜙′ 𝑥
2
ⅆ𝑥 + 𝑦 − 𝑦0 𝑤 𝑡 𝜙′′ 𝑥

▪ Energy lost per cycle:

Δ𝑈 = න
𝑉

Δ𝑢 ⅆ𝑉 = 𝜋𝐸′′න
𝑉

𝜀𝑀
2 ⅆ𝑉 ≈ 𝜋𝐼𝐸′′𝑤𝑀

2 න
0

𝐿

𝜙′′2 𝑥 ⅆ𝑥

▪ Energy stored:

𝑈𝑚𝑎𝑥 = න
𝑉

𝑢𝑚𝑎𝑥 ⅆ𝑉 ≈ 𝜎0𝐴𝑤𝑀
2
1

2
න
0

𝐿

𝜙′2 𝑥 ⅆ𝑥 +
𝐸′

2
𝐼𝑤𝑀

2 න
0

𝐿

𝜙′′2(𝑥) ⅆ𝑥

▪ And then:

𝑄 = 2𝜋
𝑈𝑚𝑎𝑥

Δ𝑈
=
𝜎0𝐴0׬

𝐿
𝜙′2 𝑥 ⅆ𝑥 + 𝐸′𝐼 0׬

𝐿
𝜙′′2 𝑥 ⅆ𝑥

𝐼𝐸′′ 0׬
𝐿
𝜙′′2 𝑥 ⅆ𝑥

=
𝐸′

𝐸′′
+
𝜎0
𝐸′′

𝐴

𝐼

0׬
𝐿
𝜙′2 𝑥 ⅆ𝑥

0׬
𝐿
𝜙′′2 𝑥 ⅆ𝑥

What happens if we put Tension in the beam?
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𝑄 = 2𝜋
𝑈𝑚𝑎𝑥

Δ𝑈
≈
𝐸′

𝐸′′
+
𝜎0
𝐸′′

𝐴

𝐼

0׬
𝐿
𝜙′2 𝑥 ⅆ𝑥

0׬
𝐿
𝜙′′2 𝑥 ⅆ𝑥

= 𝑄𝜎=0 1 +
𝜎0
𝐸′
𝐴

𝐼

0׬
𝐿
𝜙′2 𝑥 ⅆ𝑥

0׬
𝐿
𝜙′′2 𝑥 ⅆ𝑥

𝑄 ≈ 𝑄𝜎=0 1 +
𝜎0
𝐸′
𝐴

𝐼
𝐿2

0׬
1
𝜙′2 𝜉 ⅆ𝑥

0׬
1
𝜙′′2 𝜉 ⅆ𝑥

▪ For Long, Thin, Stressed structures:

𝑄 ≈ 𝑄𝜎=0
𝜎0
𝐸′
𝐴

𝐼
𝐿2

0׬
1
𝜙′2 𝜉 ⅆ𝑥

0׬
1
𝜙′′2 𝜉 ⅆ𝑥

Damping Dilution
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Dilution factor




